Cyclic Meir-Keeler Contraction and Its Fractals
نویسندگان
چکیده
In present times, there has been a substantial endeavor to generalize the classical notion of iterated function system (IFS). We introduce new type non-linear contraction namely cyclic Meir-Keeler contraction, which is generalization famous Banach contraction. show existence and uniqueness fixed point for Using this result, we propose IFS in literature construction fractals. Furthermore, extend theory countable generalized by using these maps.
منابع مشابه
Random fixed point of Meir-Keeler contraction mappings and its application
In this paper we introduce a generalization of Meir-Keeler contraction forrandom mapping T : Ω×C → C, where C be a nonempty subset of a Banachspace X and (Ω,Σ) be a measurable space with being a sigma-algebra of sub-sets of. Also, we apply such type of random fixed point results to prove theexistence and unicity of a solution for an special random integral equation.
متن کاملBest Periodic Proximity Points for Cyclic Weaker Meir-Keeler Contractions
Throughout this paper, by R we denote the set of all nonnegative numbers, while N is the set of all natural numbers. Let A and B be nonempty subsets of a metric space X, d . Consider a mapping f : A ∪ B → A ∪ B, f is called a cyclic map if f A ⊆ B and f B ⊆ A. A point x in A is called a best proximity point of f in A if d x, fx d A,B is satisfied, where d A,B inf{d x, y : x ∈ A,y ∈ B}, and x ∈ ...
متن کاملBest Proximity Point Theorems for p-Cyclic Meir-Keeler Contractions
Meir and Keeler in 1 considered an extension of the classical Banach contraction theorem on a complete metric space. Kirk et al. in 2 extended the Banach contraction theorem for a class of mappings satisfying cyclical contractive conditions. Eldred and Veeramani in 3 introduced the following definition. Let A and B be nonempty subsets of a metric space X. A map T : A ∪ B → A ∪ B, is a cyclic co...
متن کاملMeir-Keeler Contractions of Integral Type Are Still Meir-Keeler Contractions
Recommended by Sehie Park We prove that the recent fixed point theorem for contractions of integral type due to Branciari is a corollary of the famous Meir-Keeler fixed point theorem. We also prove that Meir-Keeler contractions of integral type are still Meir-Keeler contractions.
متن کاملFixed Point Theorems for a Weaker Meir-Keeler Type -Set Contraction in Metric Spaces
In 1929, Knaster et al. 1 had proved the well-known KKM theorem on n-simplex. Besides, in 1961, Fan 2 had generalized the KKM theorem to an infinite dimensional topological vector space. Later, Amini et al. 3 had introduced the class of KKM-typemappings onmetric spaces and established some fixed point theorems for this class. In this paper, we define a weaker Meir-Keeler type function and estab...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Numerical Functional Analysis and Optimization
سال: 2021
ISSN: ['1532-2467', '0163-0563']
DOI: https://doi.org/10.1080/01630563.2021.1937215